

Computing Curriculum Map

<u>Intent</u>

The curriculum has been designed to empower children with virtues that enable them to excel academically and spiritually inspiring them to serve humanity selflessly (Nishkam), with an abundance of love, compassion and forgiveness. The curriculum aims to support students to learn about peace, forgiveness, love and faith in the Divine through their academic subjects, faith practice and personal development.

Our curriculum is constructed around our vision to ensure we remain:

Faith-inspired: learning from the wisdom of religion

Our students explore the divine context of humanity and wonder of all creation. They not only learn about, but also learn from, the wisdom of religions and in so doing explore the infinite human potential to do good unconditionally. We support students to develop aspects of their own religious, spiritual or human identities. They learn about serenity through prayer and humility in service and in so doing, they deepen their own respective faith, and respect the common purpose of all religious traditions, as well as respecting the beliefs of those with no faith tradition. They explore the unique divinity of the individual, and our common humanity.

Virtues-led: nurturing compassionate, responsible human beings

We believe that the fostering of human virtues forms the foundation of all goodness. Our curricula are carefully enriched to allow experiences where our students, teachers and parents alike learn to grow through a conscious focus on virtues. Our virtues-led education approach helps to provide guidance to enable students to understand their choices in order to help lead better lives. Our students become self-reflective and flourish; they are able to build strong, meaningful relationships and understand their responsibilities to the global family and all creation, founded in faith. Students learn to experience faith through lived out through righteous living in thought, action and deed.

Aspiring for Excellence: in all that we do.

Our students and staff alike aim to become the best human beings they can possibly be, in all aspects of spiritual, social, intellectual and physical life. We foster a school culture which inspires optimism and confidence, hope and determination for all to achieve their best possible. This is accomplished through a rich and challenging curriculum, along with excellent teaching to nurture awe and wonder. Students gain a breadth and depth of knowledge and a love of learning to achieve their full potential.

The curriculum at Nishkam School West London has been carefully crafted to be broad, balanced and stimulating, giving every Nishkam student the opportunity to be knowledgeable, multi-skilled, highly literate, highly numerate, creative, expressive, compassionate and

confident people. Knowledge-rich, skills based and Faith-inspired, the Curriculum at Nishkam School West London is delivered through three **Golden Threads** that are unique to our ethos and virtues:

1	Love and forgiveness vs. Enmity and Hate
2	Peace and Collaboration vs. Conflict and War
3	Trust in God

Every composite of our curriculum is constructed of components that have each of these threads at their core. These elements can be clearly identified in our subject-based curriculum maps and Schemes of Learning documents.

A high-quality computing education equips students to use computational thinking and creativity to understand and change the world. Computing has deep links with mathematics, science, and design and technology, and provides insights into both natural and artificial systems. The core of computing is computer science, in which students are taught the principles of information and computation, how digital systems work, and how to put this knowledge to use through programming. Building on this knowledge and understanding, students are equipped to use information technology to create programs, systems and a range of content. Computing also ensures that students become digitally literate, preparing them for the future workplace and enabling them to be active participants in a digital world.

The curriculum is necessarily aspirational, focused on excellence and on securing in all learners a love of learning through the acquisition of knowledge, the study and practice of faith, and an understanding of the world around them. One aspect of the curriculum is the school ethos of the golden threads. Students will learn via collaboration, peace, forgiveness, and love through each unit of work.

Implementation:

The Primary Phase is guided by the iCompute Scheme of Work for Computing. This model effectively supports teachers to deliver a rich, broad and balanced computing curriculum fully mapped to the National Curriculum. It offers students a computing education designed for mastery using research-led computing pedagogies and covers all three strands of the computing curriculum:

- Computer Science
- Information Technology
- Digital Literacy (including eSafety)

Students are taught through whole-class interactive teaching with students working together on the same lesson content at the same time. Lessons are sequenced so that concepts are developed in logical steps with particular attention given to fundamental concepts. This ensures that all children can master concepts before moving to the next stage. Curriculum equity is offered with all students being given the time and opportunity to fully understand, explore and apply skills and ideas in different ways, in different situations and in different subjects. This enables students to fully grasp a concept and understand the relevance of their learning. In the Secondary Phase, our intent is to broaden and deepen our students understanding of IT and Computer Science, allowing students to be more independent with their approaches to computational thinking and their solutions to complex problems relating to real-world scenarios. Students can link knowledge from across different units to support their overall understanding of the course.

Curriculum Overview

Year	Half Term 1	Half Term 2	Half Term 3	Half Term 4	Half Term 5	Half Term 6
EYFS	iMake Music iMake Media iMake Video	iCan Move iCan Direct iFind Patterns	iOrganise Dała iSearch Online iCan Sequence	iStay Safe iMake Art iCan Control	iTell Stories iSend Email iMake Pictograms	iCan Report iCatch Aliens iMake Algroithms
	iCan Play	iAm Logical	iCan Program	iCan Sort/Turn	iCan Surf	iGuess Beasts
				iCan Animate		iMake Pixel Art
	Exploring and	Moving and	Number and	The world and	Being imaginative	Creating and
	creating with	handling: Directions	Technology	keeping safe online	and exploring	representing
	materials				technology	
1	iAlgorithm	iData & iModel	iModel & iSafe	Finish iSafe & iWrite	iProgram 1	iProgram- Unit 2
-	Read, produce,	Navigate, explore,	Using websites and	Use digital tools to	Read, produce &	Producing
	and understand	and create using IT	being digitally safe	communicate	understand	instructions using IT
	instructions			meaning	instructions	software
2	iPub	iProgram	iSearch	iSafe	iDo Mail & iBlog	iBlog
_	Using IT tools for a	Produce	Problem solving by	Communicate and	Make choices	Identify suitable
	purpose	sequenced	creating instructions	identify risks of IT	about applications	information to
		instructions			& tools to use for a	present
					particular purpose	
3	iData	iConnect	iNetwork & iSafe	iSafe	iProgram	iSimulate
	Design and develop	Communication	Understand	Use technology	Design and develop	Using software, IT &
	basic computer	and collaboration	computer networks	safely, respectfully	basic computer	programs to create
	programs	online		and responsibly	programs	and apply
4	iAnimate	iProgram	iProgram & iSafe	iSafe	iMail	iData
	Exploring the uses of	Test, debug and	Demonstrate, check	Demonstrate, check	Send and reply to	Explore and use
	information online	refine algorithms	and understand risks	and understand risks	emails	more advanced
		and programs	of ICT	of ICT		features of
						applications
5	iWeb	iCrypto	iSafe	iSafe	iProgram - Unit 1	iProgram - Unit 2
_	Understand,	Digital	Write and amend	Communicate	Program algorithms	Create programs.
	develop, and refine	communication	computer programs	effectively and	that achieve a	Test, debug and
	digital content	with an audience		safely online	range of specified	refine computer
					outcomes	programs.
6	iProgram	iNetwork	iSafe	iSafe & iApp- Unit 1	iApp - Unit 2	iData
	Write & amend		Find information	Discuss	Communicate and	Develop and refine
	more complex		online and check it	opportunities for	collaborate using	digital content

	computer programs	Create digital	for accuracy and	communication	technology and	
	to create a variety	content e.g.	reliability	and collaboration	online services	
	of outcomes	webpage		online		
7	Digital Literacy	Spreadsheet	Programming in	Hardware	Data	Game
	And E-Safety	Modelling	Scratch	Students explore	Representation:	Development in
	Students revise	Students deepen	Students use	the physical	Binary	Scratch
	the practical skills	their	block-based	hardware devices	Students begin to	Students continue
	of using desktop	understanding of	game	that make up a	understand how	to develop their
	Windows PCs.	the MS Office	development	computer.	computers can	programming skills
	Students are	applications by	environment	Students will learn	represent	and knowledge in
	encouraged to	creating Excel	Scratch to	about different	anything as they	the Scratch
	become	spreadsheets,	develop their skills	types of	are electrical	environment.
	independent,	applying	using	computers and	systems which	Students will
	resilient problem	formatting, using	programming	the purpose of	can only	complete their
	solvers. Students	formulas,	constructs.	memory, CPU,	represent a binary	knowledge of
	will also	functions, and	Students develop	BIOS and the	state 0 or 1.	programming
	demonstrate how	creating graphs.	a game project	motherboard.	Students learn to	constructs –
	to use internet	Students also use	over the half term		convert denary to	subroutines,
	connected	the MS Forms	- developing a		binary and vice	condition-
	devices safely –	application to	Pac Man game.		versa. Students	controlled loops,
	recognising online	create a survey	This will require use		will learn units of	count controlled
	threats and taking	and MS Office to	of programming		data bit, nibble,	loops, and lists.
	appropriate	send and receive	constructs - input,		byte, megabyte,	
	safety measures.	emails.	output, variables,		kilobyte,	
			selection,		gigabyte.	
			sequence,		Students will learn	
	Topics Covered:	Topics Covered:	iteration.	<u>Topics Covered:</u>	how computers	<u>Topics Covered:</u>
	 Logins and 	 Online and 		 Embedded, 	use binary to	 Develop a
	Passwords	standalone		personal and	represent ASCII	dance battle
	 File Explorer 	applications.		supercompu-	characters and	game using
	and OneDrive	 Using cell 		ters.	images.	subroutines.
	 MS Office and 	references.		 Input and 		 Develop a cat
	Teams.	 Using 	<u>Topics Covered:</u>	output	<u>Topics Covered:</u>	flying game
	 Keyboard 	arithmetical	 Tutorials, File 	devices.	How do	using
	shortcuts	formulas.	Management	 Primary and 	computers	condition-
	 PowerPoint 	 Formatting 	and sharing	secondary	count? The	controlled
	and Word	with fill colour.	work.	storage.	binary system	loops.

 Cyberbullying and Online Grooming. Browser and Search Plagiarism 	 Formatting with borders. Creating a Forms survey. Emailing links. Using functions for average, max, min, sum. Displaying pie, bar and line graphs. Conditional formatting. 	 Creating sprite graphics and animation. Developing an algorithm for movement. Creating a backdrop graphic. Developing an algorithm for collision detection. Developing an algorithm for score keeping using a variable. Creating enemy sprites. Developing an enemy sprites. Developing an enemy sprite movement algorithm. Testing and debugging 	 The CPU and BIOS. Motherboar- ds, sound cards and graphics cards. 	 How do humans count? The denary system. Converting denary to binary Units of data. Converting binary to denary. ASCII characters. 	 Comparing types of loops. Develop a treasure hunt game using lists. Develop a quiz game using all skills. Testing and debugging
8 Online Safety and	Computational	Programming in	Computer	Python Turtle	Data
Cyber Security	Thinking	Python	Systems and	Graphics	Representation:
Students review	Students define	Students build on	Artificial	Students build on	Images
existing online	the four	their previous		their experience	Students build on
satety knowledge	cornerstones of	programming	Students build on	of Python	their existing
ana expand their	thinking	experience using	Their knowledge	programming and	knowledge of
knowledge of	docomposition	Scratch and	bardware to	Use me iume	roprocentation
include malware	abstraction	progress to the	avplore the	demonstrate	(binary) to
and malicious	nattern	textual	nroperties of	programming	understand wave
hackers – and	recognition and	programming	computer systems	constructs This	that computers
	algorithm dosign	Language Dythen	their limitations		

how to defend against them.	as well as the essential skill of	Students will learn to output, input,	and what the future may hold.	their experience of computational	can represent images.
how to defend against them.	as well as the essential skill of debugging to tackle computational thinking puzzles <u>Topics Covered:</u> • What are algorithms? • Decomposition – breaking larger problems into smaller ones. • Abstraction – ignoring unnecessary details • Pattern	Students will learn to output, input, store data in variables, and use selection. <u>Topics Covered:</u> Using the Replit online IDE Output using the print function. Input and storing in variables. Using comments to improve code.	and what the future may hold. <u>Topics Covered:</u> • What is a general- purpose computer? • Processor, memory and storage. • Operating systems as the conductor. • Logic gates and circuits.	 their experience of computational thinking. <u>Topics Covered:</u> Defining an algorithm to draw a square. Using sequence to draw rectangles. Using pattern recognition to solve the problem of drawing 	can represent images. Students will learn how key terms resolution and colour depth affect file size. Students will learn to edit images using vector graphics and raster graphics. <u>Topics covered:</u> • Using Inkscape vector graphics editing software. • Shape
 attacks. Security Protection – antimalware, firewall. Online cyber games. 	 Pattern Recognition – making use of repeated patterns or trends to solve similar problems Algorithm Design – representing algorithms with flowcharts. 	 Using it statements for conditional branches. Using elif statements for multiple branches. 	 Artificial intelligence and machine learning. Open-source vs proprietary software. 	 drawing polygons with different number of sides. Using repetition with for loops to draw patterns with shapes. Using the define function to reuse code and call subroutines. 	 Shape properties, fill and outline. Using Gimp 2.0 bitmap editing software. Image files, resolution and colour depth. How compression affects filesize.

9 Cy and Stu exi: sec kno de kno cyt sec	ber Security d Malware dents build on sting cyber curity owledge to epen their owledge on oer threats and curity defences,	Algorithms, Flowcharts and Pseudocode Students build on their knowledge of computational thinking to show how algorithms can be represented using	Python Programming Constructs Students build on the knowledge of Python programming and their experience using Python turtle graphics as well	Data Representation Images and Sounds Students build on their knowledge of data representation (binary, bitmap and vector	Networks and the Internet Students prepare for the GCSE curriculum by introducing the underlying platforms that enable the Internet – TCP-IP,	Developing mobile applications Students put together all their knowledge and skills from the KS3 curriculum to develop a mobile phone
law crir onl	v defines minal behaviour line.	and pseudocode. Students will use flowcharts to represent sequence, selection, and iteration.	thinking and algorithms to use programming constructs from the GCSE curriculum.	understand ways that computers can represent sounds. Students will learn how key terms sample rate,	Students will explore how web pages are represented in HTML, CSS and JavaScript.	
	Dics Covered: Data Protection Act – the law and personal information. Giving advice	Flowcharts can then be used to control simulated systems using Flowol. Topics Covered:	 Topics Covered: Working collaboratively using an online IDE. Using lists to represent 	sample size and channels affect file size. Students will write Python programs to calculate file sizes for different	 Topics covered. What are networks? What is the Internet? What are protocols? 	 <u>Topics Covered:</u> Decomposing problems. Using the event driven programming paradigm to
•	on suspicious emails to prevent phishing attacks. Computer Misuse Act – the law and computer crimes and	 Algorithm definition and giving examples. Flowchart standard shapes. Pseudocode model examples. 	 sequences of data. Using strings to represent characters. Manipulating strings with built in Python functions. Using condition 	data representations. <u>Topics covered:</u> • Data representation of characters • Data representation of numbers	 Building a web page. Using CSS to give a web page style. 	 get user responses. Capturing user input. Using variables to store data. Updating display. Using success criteria to ovaluate
•	Online cyber security	 Representing sequence in flowcharts. 	controlled	schemas.		evaluate.

	simulations and puzzles.	 Representing selection in flowcharts Representing iteration in flowcharts 	loops with while • Using count- controlled loops with for.	 Data representation of sounds. Data representation of images. 		
10	Hardware Students begin by examining the internal hardware components and how they function in a Von Neumann architecture. The three essential components are CPU, memory and storage. Students will explore the fetch- decode-execute cycle and cover hardware related topics	Programming Constructs Students begin a long journey through the skills and knowledge required to use a general-purpose programming language – Python. As they gain skills, they will take on projects of increasing scope and challenge as individual, pair work or team projects.	Networks Cyber Security Students build on their knowledge of the standalone computer to explore the modern world of interconnected devices. This will lead to a study of the protocols required to exchange information on the Internet. Students must then consider cyber security threats and defences. <u>Topics Covered:</u>	Data representation Students now have the prerequisite knowledge of hardware, logic and programming to consider how computers, which are electronic systems can represent information. From the basic data types of character and integer to floating point numbers, images, sound and video.	Impacts and law Students will now take a very high- level view looking at what software runs the computer, what are the impacts of this technology and what laws define computer use. <u>Topics Covered:</u> <u>Algorithms</u> Validation Verification <u>Operating</u> <u>systems</u> Purpose of OS Utility	Programming projectsStudents tackleGCSE level practical programming projects.Topics Covered:• Programming using GUI• Programming project working individually Programming Project working in groupsAssessment • Programming
	 Hardware CPU Purpose of CPU Purpose of components in the Von 	Python programming skills Input Output Selection Iteration	Networking and cybersecurity • Characteristics of networks • Advantages and	Representation of characters• Digital storage of characters• Unicode & ASCII	 software Purpose and functionality of range of software Impacts of digital 	 project Mock Exams Component 1 & component 2

Neumann CPU	Eunctions	disadvantages	Representation of	technology on
architecture	File handling	of network	araphics	wider society
including:	 Validation 	 Network 	 Diaital storage 	Impacts
Control		topologies:	of araphics	> Ethical
unit	String	star	 Effect of 	
Arithmotic	• Shing bandling	> Mosh	different	Ecgui
	nunuing			
unu iogic	Deterative	P Ring		
Unii		> DUS	colour depins	
Main	• list, tupies,	Advantages	on the quality	
memory	aictionary	ana	of graphics	
> Cache		aisaavantages	How to	> GDPR &
Registers	Logical operators	over ring and	calculate	Data
•PC•CIR•AC	 Logical 	bus Hardware	storage	protection
C•MAR•MD	operators:	required to	requirements	2018
R	AND, OR, NOT,	establish wired	for graphics	Computer
 Input and 	XOR	and wireless	using different	misuse act
output	Boolean logic	connectivity	dimensions	1990
devices	 Assessment 	including:	and colour	> Copyright
 Fetch, decode 	 Programming 	Routers	depths.	designs &
and execute	project-in	> Hubs		patent act
cycle	pairs	Switches	Representation of	1988
 CPU 	Knowledge	Bridges	<u>sound</u>	> Creative
performance	recall logical	≻ WAP	Digital storage	commons
in relation to:	operators	> NIC	of sound	licensing
Cache size			 Effect of 	Regulation
and levels	Cybersecurity		different	of
of cache	Characteristics	Internet	sampling rates	investigator
Clock	of different	The purpose of	on the quality	y powers
speed	threats to	DNS and how	of sound	act 2000
Number of	computer	they work	How to	> Telecommu
cores	systems:	Structure of	calculate the	nications
	Malware	URLS and the	storage	regulations
Primary storage	Phishing	role and	requirements	act 2000
use and	 Social 	function of a	for sound using	 Freedom of
<u>characteristics</u>	engineerin	web browser	different	information
• RAM	a		samplina rates	act 2000
ROM	 Brute force 			Professional
 Flash memory 	attacks		Compression	standards
i i asi i nornory			<u></u>	

Cache	Denial of	Cybersecurity	 Lossy 	Assessment	
memory	service	Characteristics	 Lossless 	End of topic	
Virtual memory	attacks	of different	 Calculation of 	tests	
,	> Data	threats to	compression	Programming -	
	interceptio	computer	ratio	Working in	
Additional	n and	systems:		pairs on	
hardware	theft	Malware	Data Structures	programming	
components		 Phishing 	Records	project	
GPUs	SQL injection	Social	One		
Sound cards	Different ways	engineer-	dimensional		
Motherboards	of protecting	ina	arrays		
	against threats	 Brute force 	• Two		
	during system	attacks	dimensional		
Secondary	design	 Denial of 	arrays		
storage	creation	service	Girays		
Optical	testing & use:	attacks	Principles of		
Magnetic	 Penetration 	 Data 	programming		
 Solid state 	testing	intercenti-	• Level of		
Cloud	 Network 	on and	computer		
storage	forensics	theft	lanauaae		
Suitability and	> Anti-	mon	langoago		
	malware	SQL injection	Software tools		
of	software	 Different ways 			
contemporary	 Firewalls 	of protecting	Program		
storage		against threats	construction		
media		during system			
media	Passwords	design			
Embedded	 Double 	creation	Algorithms		
systems	authenticat	testing & use:	 Searching 		
Characteristics	ion	 Penetration 	 Sorting 		
and purpose	 Encryption 	testing	• Johning		
of embedded		> Network			
systems	Data	forensics			
 Examples of 	representation	> Anti-			
embedded	and storage	malware			
systems	Representation of	software			
Algorithms	numbers	 Firewalls 			
Sequence					
 Sequence 					

Selection	 Use and 	 User access 		
 Iteration 	convert	levels		
 Sorting 	between	Passwords		
Searching	denary, binary	> Double		
Variables	&	authenticat		
Counts	hexadecimal	ion		
 String 	counting	Encryption		
bandling	systems			
Validation	Boprocontation	Data		
	or positive and	representation		
Flow charts	negative	ana storage		
Using	integers in a	Representation of		
flowgorithm	fixed length	<u>numbers</u>		
	store using	 Use and 		
	both twos	convert		
<u>Data types</u>	complement	between		
<u>Assessment</u>	and sign &	denary, binary		
 CPU written 	magnitude	&		
test	representation	hexadecimal		
 Algorithms- 	Binary addition	counting		
writing flow	& subtraction	systems		
charts and	 Concept of 	 Representation 		
pseudo code	overflow &	of positive and		
	underflow	negative		
	Arithmetic shift	integers in a		
	function 8	fived length		
	their offect	storo using		
		siole using		
	Assessment	DOINTWOS		
	<u>Assessmeni</u>			
	End of topic	ana sign &		
	test for	magnitude		
	network, data	representation		
	representation			
	Programming	Binary addition		
	project	& subtraction		
	Working on	 Concept of 		
	Betty's Bakery	overflow &		
		underflow		

		and Magic numbers	 Arithmetic shift function & their effect <u>Assessment</u> End of topic test for network, data representation Programming project Working on Betty's Bakery and Magic numbers 			
11	Topics Covered: Throughout Year 11 students will use the knowledge and understanding of the topics gained in Year 10 to apply that knowledge. Students will analyse problems in computational terms, make reasoned judgements, design, program, evaluate and refine solutions. (AO3)	Topics Covered:PythonprogrammingskillsInputOutputSelectionIterationFunctionsFile handlingValidationAuthenticationStringhandlingData structureslist, tuples,dictionary	Topics Covered:Networks• Characteristics of networks• Advantages and disadvantages of network• Network topologies: > Star > Mesh > Ring > Bus• Advantages and disadvantages over ring and bus Hardware required to	Topics Covered:Representation of charactersDigital storage of charactersUnicode & ASCIIRepresentation of graphicsDigital storage of graphicsDigital storage of graphicsEffect of different resolution and colour depths on the quality of graphicsHow to calculate storage	Revision Mocks	Exams

	Logical operators	establish wired	requirements	
	 Logical 	and wireless	for graphics	
Topics Covered:	operators:	connectivity	using different	
	AND, OR, NOT,	including:	dimensions	
<u>Hardware</u>	XOR	Routers	and colour	
	Boolean logic	> Hubs	depths.	
<u>CPU</u>		Switches		
 Purpose of 	<u>Assessment</u>	Bridges	Representation of	
CPU	Programming	> WAP	<u>sound</u>	
 Purpose of 	project-in	> NIC	 Digital storage 	
components in	pairs		of sound	
the Von	Knowledge	Internet	 Effect of 	
Neumann CPU	recall logical	• The purpose of	different	
architecture	operators	DNS and how	sampling rates	
including:	KAT: End of	they work	on the quality	
 Control 	term test	 Structure of 	of sound	
unit		URLS and the	How to	
 Arithmetic 	<u>Cybersecurity</u>	role and	calculate the	
and logic	Characteristics	function of a	storage	
Unit	of different	web browser	requirements	
> Main	threats to		for sound using	
memory	computer	<u>Cybersecurity</u>	different	
> Cache	systems:	Characteristics	sampling rates	
Registers	Malware	of different	Compression	
PC•CIR•AC	Phishing	threats to	 Lossy 	
C•MAR•MD	> Social	computer	 Lossless 	
R	engineerin	systems:	 Calculation of 	
 Input and 	g	Malware	compression	
output	 Brute force 	Phishing	ratio	
devices	attacks	> Social	 Data 	
• Fetch, decode	Denial of	engineerin	Structures	
and execute	service	g	 Records 	
cycle	attacks	Brute force	One	
• CPU	> Data	attacks	dimensional	
performance	interceptio	Denial of	arrays	
in relation to:	n and	service	• Two	
	theft	attacks	dimensional	
			arrays	

Cache size	<u>SQL injection</u>	> Data		
and levels	 Different ways 	interceptio	Principles of	
of cache	of protecting	n and	<u>programming</u>	
Clock	against threats	theft	 Level of 	
speed	during system,		computer	
Number of	design,	<u>SQL injection</u>	language	
cores	creation,	 Different ways 	 Software tools 	
	testing & use:	of protecting	 IDEs 	
<u>Primary storage</u>	Penetration	against threats		
 use and 	testing	during system,		
characteristics	Network	design,	<u>Program</u>	
• RAM	forensics	creation,	<u>construction</u>	
• ROM	≻ Anti-	testing & use:	 Translators 	
Flash memory	malware	 Penetration 		
Cache	software	testing	<u>Algorithms</u>	
memory	 Firewalls 	Network	 Searching 	
 Virtual 	User access	forensics	 Sorting 	
memory	levels	> Anti-		
	Passwords	malware		
<u>Additional</u>	Double	software		
<u>hardware</u>	authenticat	 Firewalls 		
<u>components</u>	ion	User access		
 GPUs 	Encryption	levels		
 Sound cards 		Passwords		
 Motherboards 	<u>Data</u>	> Double		
	<u>representation</u>	authenticat		
	and storage	ion		
<u>Secondary</u>	Representation of	> Encryptio		
<u>storage</u>	<u>numbers</u>			
 Optical 	 Use and 	<u>Data</u>		
 Magnetic 	convert	<u>representation</u>		
 Solid state 	between	and storage		
Cloud	denary, binary	Representation of		
storage	&	<u>numbers</u>		
 Suitability and 	hexadecimal	 Use and 		
characteristics	counting	convert		
of	systems	between		
contemporary		denary, binary		

Year 6 to 7 Transition:

Over the course of the academic year there is regular discussion with the Secondary Computing Curriculum Lead and Primary Phase Computing Lead. There are opportunities for cross-phase leaders to spend time in classrooms and observe cross-phase. This provides the opportunity for collaboration on content studied across the Key Stages and the skills that are developed. This ensures that at Key Stage 3 we can build on and develop the foundations laid at Key Stage 2.

Assessment for learning is used throughout lessons to ensure that the students have a sound understanding of the concepts taught. Effective modelling takes place at the outset of each task to ensure that students are able to progress regardless of starting points.

Year 7 pupils begin with a reminder of safe and responsible use of computer systems, the internet, and social media. Pupils will be given a half term course in digital literacy covering use of Windows PCs including MS Office and Teams. We teach these essential digital literacy skills at the start of the year to ensure that all pupils are starting with the relevant knowledge and skills to use the IT safely and effectively without any gaps as some of our pupils have joined us from different primary schools. Year 7 pupils are then introduced to data and programming concepts through Excel functions and formulas.

For students who have not selected computing at KS4:

All students should be taught to:

• develop their capability, creativity and knowledge in computer science, digital media and information technology

Non-computing subjects can apply IT to creative solutions. Students studying GCSE Drama use video editing software. GSCE Music students have access to a suite of PCs in the music room and use these to produce their compositions. Business students should be adept at using the Office suite. Design and Technology students will be able to use 2D and 3D design applications. Other subjects can use upper library facilities after school for computer-based homework.

• develop and apply their analytic, problem-solving, design, and computational thinking skills

Brebas challenge of computational thinking to be open to all students in second week of Autumn 2. Numerous subjects used various computer-based platforms to support their students in their learning. Quizlet, Seneca Learning, Sparx maths are all platforms used routinely with all students in the secondary phase.

• understand how changes in technology affect safety, including new ways to protect their online privacy and identity, and how to report a range of concerns

Digital Literacy is an integral part of our PSHCE curriculum, and this is studied in both tutor time sessions and hourly lesson in Year 7, 8, 9 and 12. Drop down days in Year 10 and 11 address changing issues such as sexting, influence of pornography, online grooming. Specialist facilitators discuss these sensitive issues with students, giving them a safe space to express themselves and ask questions. Key messaging on these topics is shared with students throughout the year in assemblies and tutor time.

Enrichment Opportunities:

The department runs a range of extracurricular clubs to develop problem solving and programming abilities. Within the Primary Phase students have the opportunity join extra-curricular clubs such as Touch Typing and Coding. Every student can access technology and resources at school by using computers and iPads as we are guided by the scheme iCompute within the Primary Phase. Every child is involved in both "plugged" and "unplugged" lessons whereby students have the correct balance between theoretical and practical lessons. Students can attend Code Club – run in conjunction with raspberrypi.org which offers three highly structured tracks of programming either in Scratch, HTML or Python, as well as a large number of project ideas.

Secondary Students can participate in an extra-curricular club to develop problem solving and programming abilities. Our current club is focused on robotics. Students have access to robotics kit from Lego Spike Prime. Students work together to develop, test and debug Lego robots to solve specific problems. There is an opportunity to compete against other teams through Lego's Competition Ready series of training. In the past students have used computing club to develop Scratch, Python and HTML application using raspberry pi's Code Club projects. Students have also been designing 3D models in TinkerCAD to print out using 3D printer. Finally, students can attend computer-based Chess club which uses lichess.org to enable blitz games, as well as tutorials, practice and game analysis.

Impact:

Formative assessment is an integral part of our approach to Teaching and Learning. Over the course of their study, we will use weekly cumulative formative diagnostic assessments (in class or for homework) to ensure that students are consistently retrieving their knowledge of different components. The purpose of this is to ensure all knowledge is retained (and any gaps are identified and addressed promptly) and to inform teachers' planning. Using this style of assessment, we will make use of the advantages of spaced practice as well as allowing students to be able to apply their knowledge to a wide variety of contexts.

In the Primary phase, teachers use assessment for learning within lessons to provide live feedback to allow pupils to deepen their understanding and identify gaps in knowledge and skills. Knowledge reviews are planned for spaced retrieval and allow for misconceptions to be addressed and further embed pupils understanding of key knowledge, skills and vocabulary. The progression of skills and knowledge allows teachers to assess the impact over the course of a unit, year and across phases. The scheme of learning is used to identify prior links

and future learning which informs teacher assessment and allows building blocks of learning to further develop schemas within topics and across subjects.

Summative assessments are used alongside knowledge organisers to assess the impact of learning at the end of a unit. This in turn informs future teaching adaptations, based on misconceptions and gaps in knowledge and skills. Enquiry questions are used to assess the impact of the teaching of knowledge, skills and vocabulary by allowing pupils to apply their understanding through reflections and critical thinking. In the Primary phase, students complete end of unit iCompute assessments. Assessment data allows teachers to see where students are in their learning and to identify any gaps in coverage, knowledge, understanding and skills which then informs the curriculum and future teaching.

In the Secondary phase, students will sit a summative assessment every full term. This assessment will be cumulative and will assess not only what the students have learned over the previous term, but also their understanding of all relevant material previously taught. Staff are supported to mark these accurately and post assessment moderation also takes place to ensure the validity of the data. All data is analysed centrally (not by teachers), and each Curriculum Leader is given a report outlining the areas of strength and weakness. Curriculum Leaders use this information to inform future planning, support with additional interventions and set changes.